54 research outputs found

    Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCox)11.9Si1.1

    Get PDF
    The NaZn13-type compounds La(Fe1–xCox)11.9Si1.1 (x=0.04, 0.06, 0.08) were successfully synthesized, in which the Si content is the limit that can be reached by arc-melting technique. TC is tunable from 243 to 301 K with Co doping from x=0.04 to 0.08. Great magnetic entropy change S in a wide temperature range from ~230 to ~320 K has been observed. The adiabatic temperature change Tad upon changing magnetic field was also directly measured. Tad of sample x=0.06 reaches ~2.4 K upon a field change from 0 to 1.1 T. The temperature hysteresis upon phase transition is small, ~1 K, for all samples. The influence of Co doping on itinerant electron metamagnetic transition and magnetic entropy change is discussed. ©2005 American Institute of Physics.published_or_final_versio

    Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys

    Full text link
    The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refrigeration by using recently discovered giant MCE materials. In this letter, we report on an inverse situation in Ni-Mn-Sn alloys, whereby applying a magnetic field adiabatically, rather than removing it, causes the sample to cool. This has been known to occur in some intermetallic compounds, for which a moderate entropy increase can be induced when a field is applied, thus giving rise to an inverse magnetocaloric effect. However, the entropy change found for some ferromagnetic Ni-Mn-Sn alloys is just as large as that reported for giant MCE materials, but with opposite sign. The giant inverse MCE has its origin in a martensitic phase transformation that modifies the magnetic exchange interactions due to the change in the lattice parameters.Comment: 12 pages, 4 figures, to appear in Nature Materials (online published, 15 May 2005

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Prediction of thermomagnetic properties of La 0.67

    No full text

    Magnetocaloric properties of the LaFe11.7Si1.3 and LaFe11.2Co0.7Si1.1 systems

    No full text
    • …
    corecore